Deep Architecture

Monean

WHAT IS DEEP LEARNING

* Deep learning, an approach to Al based on
enabling computers to learn from experience and
understand the world in terms of a hierarchy of
concepts, with each concept defined in terms of its
relation to simpler concepts.

Several artificial intelligence projects have sought to hard-code
knowledge about the world in formal languages.

The difficulties faced by systems relying on hard-coded knowledge
suggest that Al systems need the ability to acquire their own knowledge,
by extracting patterns from raw data.

This capability is known as machine learning.

What we call a learning machine or more generally learner is the agent
that executes the learning procedure, that takes training data as
input and yields a change in the agent

The performance of these simple
machine learning algorithms depends
heavily on the representation of the
data they are given.

Data can be represented in different
ways, but some representations
make it easier for machine learning
algorithms to capture the knowledge
they provide.

Binary encoding

In many cases, the compact binary
representation is
a poor choice for learning algorithms,

eg: 3,encoded as binary 00000011
4,encoded as binary 00000100)
have no digits in common

while two values that are very
different

(like binary 10000001 = 129 and
binary 00000001 = 1) only differ by
one digit.

Representation learning algorithms can either be supervised,
unsupervised, or a combination of both (semi-supervised).

Supervised learning requires examples that include both an input and a
target output, the latter being generally interpreted as what we would
have liked the learner to produce as output, given that input. Such
examples are called labeled examples because the target output often
comes from a human providing that “right answer”.

Unsupervised learning allows a learner to capture
statistical dependencies present in unlabeled data, while
semi-supervised learning combines labeled examples and

unlabeled examples.

Machine Learning

A popular definition of learning in the context of computer programs is
“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E” (Mitchell,
1997).

Manifold Learning

* The manifold learning states that probability is concentrated around
regions called manifolds, i.e., that most configurations are unlikely
and that probable configurations are neighbors of other probable

configurations.

* The manifold hypothesis also states that small changes (e.g.
translating an input image) tend to leave unchanged categorical
variables (e.g., object identity) and that there are much fewer such
local degrees of freedom (manifold dimensions) than the overall
input dimension (the number of observed variables).

These ideas turn out to be very important to understand the
basic concept of representation associated with deep learning
algorithms, which may be understood as a way to specify a
coordinate system along these manifolds, as well as telling to
which manifold the example belongs.

Deep learning solves this central problem in representation learning by
introducing representations that are expressed in terms of other, simpler
representations.

“Depth” is not a mathematically rigorous term in this context; there is no
formal definition of deep learning. All approaches to deep learning share
the idea of nested representations of data, but different approaches view
depth in different ways.

For some approaches, the depth of the system is the depth of the flowchart
describing the computations needed to produce the final representation.
Other approaches consider depth to be the depth of the graph describing
how concepts are related to each other.

Deep learning resolves this di
fficulty by breaking the
desired complicated mapping
into a series of nested simple
mappings, each described by a
different layer of the model.
The input is presented at the
visible layer. Then a series of
hidden layers extracts
increasingly abstract features
from the image.

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

Deep learning

Example:
MLPs

Example:
Autoencoders

Representation learning

Machine learning

Example:
Logistic
regression

Example:
Knowledge
bases

Convolution Networks

Convolutional networks are simply neural networks that use convolution in place
of general matrix multiplication.

Sl ls BLS
ECNOImCIHE

ST e TRt I

Cemb@® Nefhehe

Convolution Operation

Suppose that our laser sensor is somewhat noisy.
To obtain a less noisy estimate of the spaceship’s
position, we would like to average together
several measurements. Of course, more recent
measurements are more relevant, so we will
want this to be a weighted average that gives
more weight to recent measurements.

(1) /f’“ w(a) : weighting function

j - il —igie a : the age of a measurement

s(t) = (xx w)(t)

Discrete Convolution

O

sl = (= ()= Z xlalw(t — al

a=—00

Two dimensional discrete convolution :

sli, jl = (I x K)| 7 S‘] m, n

T

” kernel

sli, 7] = (I x K)| Z ZI i —m,j —n|K|m,n]

m

Motivation

Convolution leverages three important ideas that can help improve a machine learning
system: sparse interactions, parameter sharing, and equivariant representations

Traditional neural network layers use a Convolutional networks, however, typically
matrix multiplication to describe the have sparse interactions (also referred to
interaction between each input unit as sparse connectivity or sparse weights).

and each output unit. This means every This is accomplished by making the kernel
output unit interacts with every input smaller than the input.
unit.

eg. processing an image, the input image might
have thousands or millions of pixels, but we can
detect small, meaningful features

Sparse Connectivity

Sparse connectivity, viewed from above: Highlight one input unit, x3, and also
highlight the output units in s that are affected by this unit. (Left) When s is
formed by convolution with a kernel of width 3, only three outputs are aff
ected by x3. (Right) When s is formed by matrix multiplication, connectivity
is no longer sparse, so all of the outputs are affected by x3.

Sparse connectivity, viewed from above: We highlight one output unit,
s3, and also highlight the input units in x that affect this unit. These
units are known as the receptive field of s3. (Left) When s is formed by
convolution with a kernel of width 3, only three inputs affect s3. (Right)
When s is formed by matrix multiplication, connectivity is no longer
sparse, so all of the inputs affect s3.

Parameter Sharing

Parameter Sharing : Using the same parameter for more than one function in
a model.

In a traditional neural net, each element As a synonym for parameter sharing, one
of the weight matrix is used exactly can say that a network has tied weights,
once when computing the output of a because the value of the weight applied to
layer. It is multiplied by one element of one input is tied to the value of a weight

the input, and then never revisited. applied elsewhere. In a convolutional
neural net, each member of the kernel is

used at every position of the input

Parameter sharing:

OEEOE OEEE®E

OIOIOIOI0. OICI0I0IO

Parameter sharing: We highlight the connections that use a particular
parameter in two different models. (I.¢ft) We highlight uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter
sharing, this single parameter is used at all input locations. (Right) We highlight
the use of the central element of the weight matrix in a fully connected model.
This model has no parameter sharing so the parameter is used only once.

Efficiency of edge detection. The image on the right was formed by
taking each pixel in the original image and subtracting the value of its
neighboring pixel on the left. Convolution is an extremely efficient way
of describing transformations that apply the same linear transformation
of a small, local region across the entire input.

Equivariant Representations

Figure above shows how sparse connectivity and parameter
sharing can dramatically improve the efficiency of a linear
function for detecting edges in an image.

In the case of convolution, the particular form of parameter
sharing the layer to have a property called equivariance
to translation.

Definition:

To say a function is equivariant means that if the input
changes, the output changes in the same way. Specifically, a
function f(x) is equivariant to a function g if :

t(g(x)) = g(t(x))

if we let g be any function that translate the input, i.e., shifts it

Then the convolution function is to g. For example, define g(x)
such that for all i, g(x)[i] = x[i = 1]. This shifts every element of x one unit
to the right. If we apply this transformation to x, then apply convolution,
the result will be the same as if we applied convolution to x, then applied
the transformation to the output.

Similarly with images, convolution creates a 2-D map of where
certain features appear in the input. If we move the object in the
input, its representation will move the same amount in the output.

For example, when processing images, it is useful to detect edges in the
first layer of a convolutional network, and an edge looks the same
regardless of where it appears in the image.

Note that convolution is not equivariant to some other
transformations, such as changes in the scale or rotation of an image.
Other mechanisms are necessary for handling these kinds of
transformations

A typical layer of a convolutional
network consists of three stages

rectifier is an activation
function defined as

f(x) = max(0, z)

4

Complex layer terminolog

Next layer

}

Convolutional Layer

Pooling stage

*

Detector stage:
Nonlinearity

e.g., rectified linear

A

Convolution stage:
Affine transform)

}

Simple layer terminology

Next layer

T

Pooling layer

A

Detector layer:
Nonlinearity

e.g., rectified linear

4

Convolution layer:
Affine transform)

Input to layer

*

Input to layers

Pooling helps to make the representation become invariant to small
translations of the input. This means that if we translate the input by a
small amount, the values of most of the pooled outputs do not change.

POOLING STAGE POOLING STAGE

QOOE> @O

DETECTOR STAGE DETECTOR STAGE

Invariance to local translation can be a very useful property
if we care more about whether some feature is present than
exactly where it is.

For example, when determining whether an image contains a face, we
need not know the location of the eyes with pixel-perfect accuracy, we
just need to know that there is an eye on the left side of the face and
an eye on the right side of the face.

2]

LY

S

5.

Example of learned invariances: If each of these fi
Iters drive units that appear in the same max-pooling
region, then the pooling unit will detect “5”s in any
rotation. By learning to have each filter be a diff
erent rotation of the “5” template, this pooling unit
has learned to be invariant to rotation. This is in
contrast to translation invariance, which is usually
achieved by hard-coding the net to pool over shifted
versions of a single learned filter.

Because pooling summarizes the responses over a whole neighborhood,
it is possible to use fewer pooling units than detector units, by reporting
summary statistics for pooling regions spaced k pixels apart rather than
1 pixel apart.

downsampling

0.2 0.1
O E) 6
Pooling with downsampling. Here we use max-pooling with a pool
width of 3 and a stride between pools of 2. This reduces the
representation size by a factor of 2, which reduces the computational
and statistical burden on the next layer. Note that the final pool has a

smaller size, but must be included if we do not want to ignore some of
the detector units.

downsampling

This improves the computational efficiency of the network because
the next layer has roughly k times fewer inputs to process. When the
number of parameters in the next layer is a function of its input size
(such as when the next layer is fully connected and based on matrix
multiplication) this reduction in the input size can also result in

improved statistical efficiency and reduced memory requirements for
storing the parameters.

Manifold perspective

Manifold learning is an approach to machine learning that is capitalizing on the
manifold hypothesis (, : ,): the data

generating distribution is assumed to concentrate near regions of low dimensionality.

The notion of manifold in mathematics refers to continuous spaces that
locally resemble Euclidean space, and the term we should be using is really
submanifold, which corresponds to a subset which has a manifold
structure. The use of the term manifold in machine learning is much looser
than its use in mathematics

* the data may not be strictly on the manifold, but only near it,

* the dimensionality may not be the same everywhere,

* the notion actually referred to in machine learning naturally extends
to discrete spaces.

manifold hypothesis: when a configuration is probable it is generally
surrounded (at least in some directions) by other probable configurations.

e.g. : If a configuration of pixels looks like a natural image, then there
are tiny changes one can make to the image (like translating everything
by 0.1 pixel to the left) which yield another natural-looking image.

Non-parametric manifold learning procedures build a nearest neighbor graph
whose nodes are training examples and arcs connect nearest neighbors. Various
procedures can thus obtain the tangent plane associated with a neighborhood of the
graph, and a coordinate system that associates each training example with a real-valued
vector position, or embedding. It is possible to generalize such a representation to new
examples by a form of interpolation. So long as the number of examples is large enough
to cover the curvature and twists of the manifold, these approaches work well. Images

from the QMUL Multiview Face Dataset (Gong et al., 2000)

AXRTHELZR AN ERS

= $0000

00000°

To 3 1) [~~~

BT B 58 B S A\ U v

FE =R P8R

HAXNENo —Fhi¥h 3% e, 3t W #H —Nif 2 s %
WE Y,EH vGen Y B Neg(v Gen ¥) # X B F Flg () (¥
PYyRYHEEEE),

BEWEA - ZHDEL W RAREBLEATTHIEN
%io

ERH R4 AFENAERS, AEHESRHEREEERE. . .

T

FRHNAR——B1E (EE)

(TTizﬁ\’@?%@ il)

[XA H A

2 = « %\Wgﬁf jnﬂh 99
L& 5 5

TERRAENL: —FR iR rRE
pl, ReEH T?J\EI‘JE%% ES

RO /R e EAE TR A R L =« R

BRI AR BIERAERT AGAR R B MR B B AT O 75
PR, BRER R TR S KRR

WRIKIR, EXEERKF[RERRIANERR, ATEA
BTl 6 HH Ak RERRBAF KT BN, DR Tmimid 7 iliE
HNIHBRF

FEAE AR EIER B 4NN, BESHK

EHERAIH, IMHERUFEZRATRET —IERHETE-NFIER. AP
Ha eI ERNERRE R TP
IR IR ?

R YN A

1. FIEEA 1R RGN R M

2. 755 F LA

3. A E S ABEEBEE T ERREER

4N R —NMEEPH2ARBENREER, HARKEK

5 E A £ N IE B 2 18] B8 R IUABATT AR LAk

6. \FR Lk AH AL AT RE— 2 IS Y R H Z 7

7.8 BRSNS, BEMHFREEERER
8.2 H &ML &

AT R A 7 A 7E TR BPR— K B i 2 AL R L U B E
—iE, XS A RGPS AR RIE

N LA
ZaNl278
v - PR

o R IE

TR THREH—H oA RGEFHEE
ERBTHIRYE . ERXFERNH, ENEHES5H
SR BIARHR 7 BLSE) HEE R o

B SE 1t 57 B — DI AR AT BAFE AL G 2

A FHI T AR

thanie, HYBRHARFRIESRT AR, =420 2
KIS BB INERAT S mrie sl e, ILYEEN, FIFALN]
IR YR 45 RE BB 2 45 B BT A RL T O AR,
BT “T—ABE" B—AFHRLENERE.

W OTOOMNONONNUSEINOMMNIYN N
DN INOOOMOWO - ONNUNDONWOW

NOW @
ONONDTONE 1D
SOONND ONNNONDNONE =N N
I N SHONTI 0O

o 886847835197217843094927

MNOONDQWC D o
allir[= i <TI0
- ot .)
o Ll w
i _ NS0 O TIONN
, = AT 4\
™ e N
DN . m
DO OO
- 4 ,619;
e Tl i..
|] If
: N
. -
) d ‘
: p /
— 8 - ND
/s y—— ..‘
y B
— ;=
M L
HA
moE
¥ R
SR .
i g
il s
-]
- LS LURRGg [E.L.IWA
9 TINOANTOROD TES /
= = _
NS o/ Neoo T y
\n OUOOM
T OO @N DU HD D ;
00 : W A T L
)00 L0 N IINSTOIONN (] y]
DN OM 0o LNNNOW - NMON
-t ‘ wwonw

0354247551789258581279792480998443839,v
FOOWNSNONSOO NN NSO ONOSINOOWOMS =

8\ NOON ©
- 9327199673

6665835738357

4 91- S
NI
:79!3521351 \f

M}B o

/i

.\
/ PR -
¥y
.
'
. § \.\
4
N -
M -
o ,
-Il F
w0) 9
o < N (0
oo i

n i) N
® N N
117324 MW 0K

0w

